Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Whole-genome and whole-exome sequencing in neurological diseases

Abstract

Genetic risk factors that underlie many rare and common neurological disorders remain poorly understood because of the multifactorial and heterogeneous nature of these complex traits. With the decreasing cost of massively parallel sequencing technologies, whole-genome and whole-exome sequencing will soon allow the characterization of the full spectrum of sequence and structural variants present in each individual. Methods are being developed to parse the huge amount of genomic data and to sift out which variants are associated with diseases. Numerous challenges are inherent in the identification of rare and common variants that have a role in complex neurological diseases, and tools are being developed to overcome these challenges. Given that genomic data will soon be the main driver towards the goal of personalized medicine, future developments in the production and interpretation of data, as well as in ethics and counselling, will be needed for whole-genome and whole-exome sequencing to be used as informative tools in a clinical setting.

Key Points

  • Whole-genome and whole-exome sequencing is becoming increasingly affordable for use in a clinical setting

  • Recent studies demonstrate successes in applying whole-genome or whole-exome sequencing to disease gene discovery and clinical diagnosis of complex neurological diseases, but they also highlight major challenges in data interpretation

  • The various tools and methods that have been developed to process next-generation sequencing data and to parse the list of genomic variants must be carefully evaluated for clinical use

  • The majority of genomic variants do not have known or confirmed clinical effects, and caution is needed in the interpretation and reporting of genetic results

  • Basic guidelines have been drawn up for the implementation of genetic testing in a clinical setting; these guidelines are likely to be reviewed and changed over time

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Steps in the generation of whole-genome or whole-exome sequencing data for analysis.
Figure 2: Suggested steps in filtering of genomic variants for the identification of Mendelian disease mutations or rare variants with large effects.

Similar content being viewed by others

References

  1. Mardis, E. R. A decade's perspective on DNA sequencing technology. Nature 470, 198–203 (2011).

    Article  CAS  Google Scholar 

  2. Erdmann, J. Next generation technology edges genome sequencing toward the clinic. Chem. Biol. 18, 1513–1514 (2011).

    Article  CAS  Google Scholar 

  3. Pierce, B. L. & Ahsan, H. Clinical assessment incorporating a personal genome. Lancet 376, 869 (2010).

    Article  Google Scholar 

  4. Hong, K. W. & Oh, B. Overview of personalized medicine in the disease genomic era. BMB Rep. 43, 643–648 (2010).

    Article  CAS  Google Scholar 

  5. Ng, S. B. et al. Targeted capture and massively parallel sequencing of 12 human exomes. Nature 461, 272–276 (2009).

    Article  CAS  Google Scholar 

  6. Mamanova, L. et al. Target-enrichment strategies for next-generation sequencing. Nat. Methods 7, 111–118 (2010).

    Article  CAS  Google Scholar 

  7. DNA sequencing costs. National Human Genome Research Institute [online], (2012).

  8. Pareek, C. S., Smoczynski, R. & Tretyn, A. Sequencing technologies and genome sequencing. J. Appl. Genet. 52, 413–435 (2011).

    Article  CAS  Google Scholar 

  9. Metzker, M. L. Sequencing technologies—the next generation. Nat. Rev. Genet. 11, 31–46 (2010).

    Article  CAS  Google Scholar 

  10. Lupski, J. R. et al. Whole-genome sequencing in a patient with Charcot–Marie–Tooth neuropathy. N. Engl. J. Med. 362, 1181–1191 (2010).

    Article  CAS  Google Scholar 

  11. Bilguvar, K. et al. Whole-exome sequencing identifies recessive WDR62 mutations in severe brain malformations. Nature 467, 207–210 (2010).

    Article  CAS  Google Scholar 

  12. Wang, J. L. et al. TGM6 identified as a novel causative gene of spinocerebellar ataxias using exome sequencing. Brain 133, 3510–3518 (2011).

    Article  Google Scholar 

  13. Wang, J. L. et al. Identification of PRRT2 as the causative gene of paroxysmal kinesigenic dyskinesias. Brain 134, 3493–3501 (2011).

    Article  Google Scholar 

  14. Lee, H. et al. Exome sequencing identifies PDE4D mutations in acrodysostosis. Am. J. Hum. Genet. 90, 746–751 (2012).

    Article  CAS  Google Scholar 

  15. Wan, J. et al. Mutations in the RNA exosome component gene EXOSC3 cause pontocerebellar hypoplasia and spinal motor neuron degeneration. Nat. Genet. 44, 704–708 (2012).

    Article  CAS  Google Scholar 

  16. Walker, R. H. et al. Genetic diagnosis of neuroacanthocytosis disorders using exome sequencing. Mov. Disord. 27, 539–543 (2011).

    Article  Google Scholar 

  17. Weedon, M. N. et al. Exome sequencing identifies a DYNC1H1 mutation in a large pedigree with dominant axonal Charcot–Marie–Tooth disease. Am. J. Hum. Genet. 89, 308–312 (2011).

    Article  CAS  Google Scholar 

  18. Montenegro, G. et al. Exome sequencing allows for rapid gene identification in a Charcot–Marie–Tooth family. Ann. Neurol. 69, 464–470 (2011).

    Article  CAS  Google Scholar 

  19. Zimprich, A. et al. A mutation in VPS35, encoding a subunit of the retromer complex, causes late-onset Parkinson disease. Am. J. Hum. Genet. 89, 168–175 (2011).

    Article  CAS  Google Scholar 

  20. Vilariño-Güell, C. et al. VPS35 mutations in Parkinson disease. Am. J. Hum. Genet. 89, 162–167 (2011).

    Article  Google Scholar 

  21. Chartier-Harlin, M. C. et al. Translation initiator EIF4G1 mutations in familial Parkinson disease. Am. J. Hum. Genet. 89, 398–406 (2011).

    Article  CAS  Google Scholar 

  22. Guerreiro, R. J. et al. Exome sequencing reveals an unexpected genetic cause of disease: NOTCH3 mutation in a Turkish family with Alzheimer's disease. Neurobiol. Aging 33, 1008.e17–1008.e23 (2011).

    Article  Google Scholar 

  23. Ramagopalan, S. V. et al. Rare variants in the CYP27B1 gene are associated with multiple sclerosis. Ann. Neurol. 70, 881–886 (2011).

    Article  CAS  Google Scholar 

  24. Hayden, E. C. Sequencing set to alter clinical landscape. Nature 482, 288 (2012).

    Article  Google Scholar 

  25. Lander, E. S. et al. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001).

    Article  CAS  Google Scholar 

  26. Venter, J. C. et al. The sequence of the human genome. Science 291, 1304–1351 (2001).

    Article  CAS  Google Scholar 

  27. Choi, M. et al. Genetic diagnosis by whole exome capture and massively parallel DNA sequencing. Proc. Natl Acad. Sci. USA 106, 19096–19101 (2009).

    Article  CAS  Google Scholar 

  28. Johansson, A. C. & Feuk, L. Characterizing and interpreting genetic variation from personal genome sequencing. Methods Mol. Biol. 838, 343–367 (2012).

    Article  CAS  Google Scholar 

  29. Clark, M. J. et al. Performance comparison of exome DNA sequencing technologies. Nat. Biotechnol. 29, 908–914 (2012).

    Article  Google Scholar 

  30. DePristo, M. A. et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet. 43, 491–498 (2011).

    Article  CAS  Google Scholar 

  31. Wheeler, D. A. et al. The complete genome of an individual by massively parallel DNA sequencing. Nature 452, 872–876 (2008).

    Article  CAS  Google Scholar 

  32. Levy, S. et al. The diploid genome sequence of an individual human. PLoS Biol. 5, e254 (2007).

    Article  Google Scholar 

  33. Bentley, D. R. et al. Accurate whole human genome sequencing using reversible terminator chemistry. Nature 456, 53–59 (2008).

    Article  CAS  Google Scholar 

  34. Ng, P. C. et al. Genetic variation in an individual human exome. PLoS Genet. 4, e1000160 (2008).

    Article  Google Scholar 

  35. Genomes [online], (2012).

  36. Genomes Project Consortium. A map of human genome variation from population-scale sequencing. Nature 467, 1061–1073 (2010).

  37. SIFT, J. Craig Venter Institute [online], (2011).

  38. Ng, P. C. & Henikoff, S. SIFT: Predicting amino acid changes that affect protein function. Nucleic Acids Res. 31, 3812–3814 (2003).

    Article  CAS  Google Scholar 

  39. PolyPhen-2 Wiki [online], (2012).

  40. Adzhubei, I. A. et al. A method and server for predicting damaging missense mutations. Nat. Methods 7, 248–249 (2010).

    Article  CAS  Google Scholar 

  41. MutationTaster [online], (2010).

  42. Schwarz, J. M., Rodelsperger, C., Schuelke, M. & Seelow, D. MutationTaster evaluates disease-causing potential of sequence alterations. Nat. Methods 7, 575–576 (2010).

    Article  CAS  Google Scholar 

  43. Condel [online], (2012).

  44. Gonzalez-Perez, A. & Lopez-Bigas, N. Improving the assessment of the outcome of nonsynonymous SNVs with a consensus deleteriousness score, Condel. Am. J. Hum. Genet. 88, 440–449 (2011).

    Article  CAS  Google Scholar 

  45. Tchernitchko, D., Goossens, M. & Wajcman, H. In silico prediction of the deleterious effect of a mutation: proceed with caution in clinical genetics. Clin. Chem. 50, 1974–1978 (2004).

    Article  CAS  Google Scholar 

  46. Variant Annotation, Analysis and Search Tool. Yandell Lab [online], (2011).

  47. Yandell, M. et al. A probabilistic disease-gene finder for personal genomes. Genome Res. 21, 1529–1542 (2011).

    Article  CAS  Google Scholar 

  48. Endeavour. BIOInformatics [online], (2010).

  49. Schuierer, S., Tranchevent, L. C., Dengler, U. & Moreau, Y. Large-scale benchmark of Endeavour using MetaCore maps. Bioinformatics 26, 1922–1923 (2010).

    Article  CAS  Google Scholar 

  50. Johnson, J. O. et al. Exome sequencing reveals VCP mutations as a cause of familial ALS. Neuron 68, 857–864 (2011).

    Article  Google Scholar 

  51. Bras, J., Verloes, A., Schneider, S. A., Mole, S. E. & Guerreiro, R. J. Mutation of the parkinsonism gene ATP13A2 causes neuronal ceroid-lipofuscinosis. Hum. Mol. Genet. 21, 2646–2650 (2012).

    Article  CAS  Google Scholar 

  52. The Human Gene Mutation Database [online], (2008).

  53. MacArthur, D. G. et al. A systematic survey of loss-of-function variants in human protein-coding genes. Science 335, 823–828 (2012).

    Article  CAS  Google Scholar 

  54. Tennessen, J. A. et al. Evolution and functional impact of rare coding variation from deep sequencing of human exomes. Science http://dx.doi.org/10.1126/science.1219240.

  55. Nelson, M. R. et al. An abundance of rare functional variants in 202 drug target genes sequenced in 14,002 people. Science http://dx.doi.org/10.1126/science.1217876.

  56. Visscher, P. M., Brown, M. A., McCarthy, M. I. & Yang, J. Five years of GWAS discovery. Am. J. Hum. Genet. 90, 7–24 (2012).

    Article  CAS  Google Scholar 

  57. ENCODE Project Consortium. The ENCODE (ENCyclopedia Of DNA Elements) Project. Science 306, 636–640 (2004).

  58. Park, P. J. ChIP–seq: advantages and challenges of a maturing technology. Nat. Rev. Genet. 10, 669–680 (2009).

    Article  CAS  Google Scholar 

  59. Kasowski, M. et al. Variation in transcription factor binding among humans. Science 328, 232–235 (2010).

    Article  CAS  Google Scholar 

  60. Regulatory Sequence Analysis Tools [online], (2011).

  61. Thomas-Chollier, M. et al. RSAT 2011: regulatory sequence analysis tools. Nucleic Acids Res. 39, W86–W91 (2011).

    Article  CAS  Google Scholar 

  62. mRNA by SNP Browser v1.0.1. Center for Statistical Genetics [online], (2007).

  63. Dixon, A. L. et al. A genome-wide association study of global gene expression. Nat. Genet. 39, 1202–1207 (2007).

    Article  CAS  Google Scholar 

  64. Montgomery, S. B., Lappalainen, T., Gutierrez-Arcelus, M. & Dermitzakis, E. T. Rare and common regulatory variation in population-scale sequenced human genomes. PLoS Genet. 7, e1002144 (2011).

    Article  CAS  Google Scholar 

  65. Satake, W. et al. Genome-wide association study identifies common variants at four loci as genetic risk factors for Parkinson's disease. Nat. Genet. 41, 1303–1307 (2009).

    Article  CAS  Google Scholar 

  66. Simon-Sanchez, J. et al. Genome-wide association study reveals genetic risk underlying Parkinson's disease. Nat. Genet. 41, 1308–1312 (2009).

    Article  CAS  Google Scholar 

  67. Do, C. B. et al. Web-based genome-wide association study identifies two novel loci and a substantial genetic component for Parkinson's disease. PLoS Genet. 7, e1002141 (2011).

    Article  CAS  Google Scholar 

  68. Nalls, M. A. et al. Imputation of sequence variants for identification of genetic risks for Parkinson's disease: a meta-analysis of genome-wide association studies. Lancet 377, 641–649 (2011).

    Article  Google Scholar 

  69. Klassen, T. et al. Exome sequencing of ion channel genes reveals complex profiles confounding personal risk assessment in epilepsy. Cell 145, 1036–1048 (2011).

    Article  CAS  Google Scholar 

  70. Calvo, S. E. et al. Molecular diagnosis of infantile mitochondrial disease with targeted next-generation sequencing. Sci. Transl. Med. 4, 118ra10 (2012).

    Article  Google Scholar 

  71. Lupski, J. R., Belmont, J. W., Boerwinkle, E. & Gibbs, R. A. Clan genomics and the complex architecture of human disease. Cell 147, 32–43 (2011).

    Article  CAS  Google Scholar 

  72. Tucci, A. et al. Study of the genetic variability in a Parkinson's disease gene: EIF4G1. Neurosci. Lett. 518, 19–22 (2012).

    Article  CAS  Google Scholar 

  73. Bansal, V., Libiger, O., Torkamani, A. & Schork, N. J. Statistical analysis strategies for association studies involving rare variants. Nat. Rev. Genet. 11, 773–785 (2010).

    Article  CAS  Google Scholar 

  74. Kiezun, A., Garimella, K., Do, R., Stitziel, N. O. & Neale, B. M. Exome sequencing and the genetic basis of complex traits. Nat. Genet. 44, 623–630 (2012).

    Article  CAS  Google Scholar 

  75. Mathieson, I. & McVean, G. Differential confounding of rare and common variants in spatially structured populations. Nat. Genet. 44, 243–246 (2012).

    Article  CAS  Google Scholar 

  76. Roach, J. C. et al. Analysis of genetic inheritance in a family quartet by whole-genome sequencing. Science 328, 636–639 (2010).

    Article  CAS  Google Scholar 

  77. O'Roak, B. J. et al. Exome sequencing in sporadic autism spectrum disorders identifies severe de novo mutations. Nat. Genet. 43, 585–589 (2011).

    Article  CAS  Google Scholar 

  78. Girard, S. L. et al. Increased exonic de novo mutation rate in individuals with schizophrenia. Nat. Genet. 43, 860–863 (2011).

    Article  CAS  Google Scholar 

  79. Sanders, S. J. et al. De novo mutations revealed by whole-exome sequencing are strongly associated with autism. Nature 485, 237–241 (2012).

    Article  CAS  Google Scholar 

  80. O'Roak, B. J. et al. Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations. Nature 485, 246–250 (2012).

    Article  CAS  Google Scholar 

  81. Neale, B. M. et al. Patterns and rates of exonic de novo mutations in autism spectrum disorders. Nature 485, 242–245 (2012).

    Article  CAS  Google Scholar 

  82. Kumari, U. & Tan, E. K. LRRK2 in Parkinson's disease: genetic and clinical studies from patients. FEBS J. 276, 6455–6463 (2009).

    Article  CAS  Google Scholar 

  83. Phimister, E. G., Feero, W. G. & Guttmacher, A. E. Realizing genomic medicine. N. Engl. J. Med. 366, 757–759 (2012).

    Article  CAS  Google Scholar 

  84. Corder, E. H. et al. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer's disease in late onset families. Science 261, 921–923 (1993).

    Article  CAS  Google Scholar 

  85. Fabsitz, R. R. et al. Ethical and practical guidelines for reporting genetic research results to study participants: updated guidelines from a National Heart, Lung, and Blood Institute working group. Circ. Cardiovasc. Genet. 3, 574–580 (2010).

    Article  Google Scholar 

  86. Cassa, C. A. et al. Disclosing pathogenic genetic variants to research participants: quantifying an emerging ethical responsibility. Genome Res. 22, 421–428 (2011).

    Article  Google Scholar 

  87. Personal Genome Project [online], (2012).

  88. Lyon, G. J. Personalized medicine: Bring clinical standards to human-genetics research. Nature 482, 300–301 (2012).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

J.-N. Foo researched the data for and wrote the article. J.-J. Liu and E.-K. Tan made substantial contributions to discussions of the content, and reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Eng-King Tan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Foo, JN., Liu, JJ. & Tan, EK. Whole-genome and whole-exome sequencing in neurological diseases. Nat Rev Neurol 8, 508–517 (2012). https://doi.org/10.1038/nrneurol.2012.148

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2012.148

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research