Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Recombinant AAV vector encoding human VEGF165 enhances wound healing

Abstract

Delivery of therapeutic genes represents an appealing possibility to accelerate healing of wounds that are otherwise difficult to treat, such as those in patients with metabolic disorders or infections. Experimental evidence indicates that in such conditions potentiation of neo-angiogenesis at the wound site might represent an important therapeutic target. Here we explore the efficacy of gene therapy of wound healing with an adeno-associated virus (AAV) vector expressing the 165 amino acid isoform of vascular endothelial growth factor-A (VEGF-A). By gene marker studies, we found that AAV vectors are highly efficient for gene transfer to the rat skin, displaying an exquisite tropism for the panniculus carnosus. Gene expression from these vectors is sustained and persistent over time. Delivery of VEGF165 to full thickness excisional wounds in rats resulted in remarkable induction of new vessel formation, with consequent reduction of the healing time. Histological examination of treated wounds revealed accelerated remodeling of epidermis and dermis, with formation of a thick granular layer, containing numerous newly formed capillaries, as well as vessels of larger size. These data underline the importance of neo-angiogenesis in the healing process and indicate that VEGF gene transfer might represent a novel approach to treat wound healing disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Stadelmann WK, Digenis AG, Tobin GR . Physiology and healing dynamics of chronic cutaneous wounds Am J Surg 1998 176: 26S–38S

    Article  CAS  PubMed  Google Scholar 

  2. Antoniades HN et al. Injury induces in vivo expression of platelet-derived growth factor (PDGF) and PDGF receptor mRNAs in skin epithelial cells and PDGF mRNA in connective tissue fibroblasts Proc Natl Acad Sci USA 1991 88: 565–569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Cromack DT et al. Transforming growth factor beta levels in rat wound chambers J Surg Res 1987 42: 622–628

    Article  CAS  PubMed  Google Scholar 

  4. Kibe Y, Takenaka H, Kishimoto S . Spatial and temporal expression of basic fibroblast growth factor protein during wound healing of rat skin Br J Dermatol 2000 143: 720–727

    Article  CAS  PubMed  Google Scholar 

  5. Hashimoto KR . Regulation of keratinocyte function by growth factors J Dermatol Sci 2000 24: S46–S50

    Article  CAS  PubMed  Google Scholar 

  6. Matsuda H et al. Role of nerve growth factor in cutaneous wound healing: accelerating effects in normal and healing-impaired diabetic mice J Exp Med 1998 187: 297–306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Shukla A, Dubey MP, Srivastava R, Srivastava BS . Differential expression of proteins during healing of cutaneous wounds in experimental normal and chronic models Biochem Biophys Res Commun 1998 244: 434–439

    Article  CAS  PubMed  Google Scholar 

  8. Pierce GF et al. Detection of platelet-derived growth factor (PDGF)-AA in actively healing human wounds treated with recombinant PDGF-BB and absence of PDGF in chronic nonhealing wounds J Clin Invest 1995 96: 1336–1350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Werner S et al. Induction of keratinocyte growth factor expression is reduced and delayed during wound healing in the genetically diabetic mouse J Invest Dermatol 1994 103: 469–473

    Article  CAS  PubMed  Google Scholar 

  10. Brown LF et al. Expression of vascular permeability factor (vascular endothelial growth factor) by epidermal keratinocytes during wound healing J Exp Med 1992 176: 1375–1379

    Article  CAS  PubMed  Google Scholar 

  11. Ansel JC et al. Human keratinocytes are a major source of cutaneous platelet-derived growth factor J Clin Invest 1993 92: 671–678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Nissen NN et al. Vascular endothelial growth factor mediates angiogenic activity during the proliferative phase of wound healing Am J Pathol 1998 152: 1445–1452

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Stadelmann WK, Digenis AG, Tobin GR . Impediments to wound healing Am J Surg 1998 176: 39S–47S

    Article  CAS  PubMed  Google Scholar 

  14. Falanga V, Eaglstein WH . The ‘trap’ hypothesis of venous ulceration Lancet 1993 341: 1006–1008

    Article  CAS  PubMed  Google Scholar 

  15. Weckroth M et al. Matrix metalloproteinases, gelatinase and collagenase, in chronic leg ulcers J Invest Dermatol 1996 106: 1119–1124

    Article  CAS  PubMed  Google Scholar 

  16. Altavilla D et al. Inhibition of lipid peroxidation restores impaired vascular endothelial growth factor expression and stimulates wound healing and angiogenesis in the genetically diabetic mouse Diabetes 2001 50: 667–674

    Article  CAS  PubMed  Google Scholar 

  17. Lawrence WT, Diegelmann RF . Growth factors in wound healing Clin Dermatol 1994 12: 157–169

    Article  CAS  PubMed  Google Scholar 

  18. Robson MC, Mustoe TA, Hunt TK . The future of recombinant growth factors in wound healing Am J Surg 1998 176: 80S–82S

    Article  CAS  PubMed  Google Scholar 

  19. Greenhalgh DG . The role of growth factors in wound healing J Trauma 1996 41: 159–167

    Article  CAS  PubMed  Google Scholar 

  20. Greenhalgh DA, Rothnagel JA, Roop DR . Epidermis: an attractive target tissue for gene therapy J Invest Dermatol 1994 103: 63S–69S

    Article  CAS  PubMed  Google Scholar 

  21. Ghazizadeh S, Taichman LB . Virus-mediated gene transfer for cutaneous gene therapy Hum Gene Ther 2000 11: 2247–2251

    Article  CAS  PubMed  Google Scholar 

  22. Vogel JC . Nonviral skin gene therapy Hum Gene Ther 2000 11: 2253–2259

    Article  CAS  PubMed  Google Scholar 

  23. Snyder RO et al. Efficient and stable adeno-associated virus-mediated transduction in the skeletal muscle of adult immunocompetent mice Hum Gene Ther 1997 8: 1891–1900

    Article  CAS  PubMed  Google Scholar 

  24. Su H, Lu R, Kan YW . Adeno-associated viral vector-mediated vascular endothelial growth factor gene transfer induces neovascular formation in ischemic heart Proc Natl Acad Sci USA 2000 97: 13801–13806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kaplitt MG et al. Long-term gene expression and phenotypic correction using adeno-associated virus vectors in the mammalian brain Nat Genet 1994 8: 148–154

    Article  CAS  PubMed  Google Scholar 

  26. Xiao W et al. Adeno-associated virus as a vector for liver-directed gene therapy J Virol 1998 72: 10222–10226

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Nakai H et al. Adeno-associated viral vector-mediated gene transfer of human blood coagulation factor IX into mouse liver Blood 1998 91: 4600–4607

    CAS  PubMed  Google Scholar 

  28. Chirmule N et al. Immune responses to adenovirus and adeno-associated virus in humans Gene Therapy 1999 6: 1574–1583

    Article  CAS  PubMed  Google Scholar 

  29. Kay MA et al. Evidence for gene transfer and expression of factor IX in haemophilia B patients treated with an AAV vector Nat Genet 2000 24: 257–261

    Article  CAS  PubMed  Google Scholar 

  30. Monahan PE, Samulski RJ . AAV vectors: is clinical success on the horizon? Gene Therapy 2000 7: 24–30

    Article  CAS  PubMed  Google Scholar 

  31. Descamps V, Blumenfeld N, Beuzard Y, Perricaudet M . Keratinocytes as a target for gene therapy. Sustained production of erythropoietin in mice by human keratinocytes transduced with an adenoassociated virus vector Arch Dermatol 1996 132: 1207–1211

    Article  CAS  PubMed  Google Scholar 

  32. Braun-Falco M, Doenecke A, Smola H, Hallek M . Efficient gene transfer into human keratinocytes with recombinant adeno- associated virus vectors Gene Therapy 1999 6: 432–441

    Article  CAS  PubMed  Google Scholar 

  33. Hengge UR, Mirmohammadsadegh A . Adeno-associated virus expresses transgenes in hair follicles and epidermis Mol Ther 2000 2: 188–194

    Article  CAS  PubMed  Google Scholar 

  34. Donahue BA et al. Selective uptake and sustained expression of AAV vectors following subcutaneous delivery J Gene Med 1999 1: 31–42

    Article  CAS  PubMed  Google Scholar 

  35. Magovern CJ et al. Regional angiogenesis induced in nonischemic tissue by an adenoviral vector expressing vascular endothelial growth factor Hum Gene Ther 1997 8: 215–227

    Article  CAS  PubMed  Google Scholar 

  36. Baumgartner I et al. Constitutive expression of phVEGF165 after intramuscular gene transfer promotes collateral vessel development in patients with critical limb ischemia Circulation 1998 97: 1114–1123

    Article  CAS  PubMed  Google Scholar 

  37. Arveschoug A, Christensen KS . Constitutive expression of phVEGF165 after intramuscular gene transfer promotes collateral vessel development in patients with critical limb ischemia Circulation 1999 99: 2967–2968

    Article  CAS  PubMed  Google Scholar 

  38. Griffioen AW, Molema G . Angiogenesis: potentials for pharmacologic intervention in the treatment of cancer, cardiovascular diseases, and chronic inflammation Pharmacol Rev 2000 52: 237–268

    CAS  PubMed  Google Scholar 

  39. Howdieshell TR et al. Antibody neutralization of vascular endothelial growth factor inhibits wound granulation tissue formation J Surg Res 2001 96: 173–182

    Article  CAS  PubMed  Google Scholar 

  40. Laing PT . The development and complications of diabetic foot ulcers Am J Surg 1998 176: 11S–19S

    Article  CAS  PubMed  Google Scholar 

  41. Higley HR, Ksander GA, Gerhardt CO, Falanga V . Extravasation of macromolecules and possible trapping of transforming growth factor-beta in venous ulceration Br J Dermatol 1995 132: 79–85

    Article  CAS  PubMed  Google Scholar 

  42. Trengove NJ et al. Analysis of the acute and chronic wound environments: the role of proteases and their inhibitors Wound Repair Regen 1999 7: 442–452

    Article  CAS  PubMed  Google Scholar 

  43. Kessler PD et al. Gene delivery to skeletal muscle results in sustained expression and systemic delivery of a therapeutic protein Proc Natl Acad Sci USA 1996 93: 14082–14087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Swift ME, Kleinman HK, DiPietro LA . Impaired wound repair and delayed angiogenesis in aged mice Lab Invest 1999 79: 1479–1487

    CAS  PubMed  Google Scholar 

  45. Schmassmann AM . Mechanisms of ulcer healing and effects of nonsteroidal anti-inflammatory drugs Am J Med 1998 104: 43S–51S

    Article  CAS  PubMed  Google Scholar 

  46. Zolotukhin SA et al. A ‘humanized’ green fluorescent protein cDNA adapted for high-level expression in mammalian cells J Virol 1996 70: 4646–4654

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Grimm D, Kern A, Rittner K, Kleinschmidt JA . Novel tools for production and purification of recombinant adenoassociated virus vectors Hum Gene Ther 1998 9: 2745–2760

    Article  CAS  PubMed  Google Scholar 

  48. Grimm D, Kern A, Rittner K, Kleinschmidt JA . Novel tools for production and purification of recombinant adenoassociated virus vectors Snyder RO, Xiao X, Samulski J. Production of recombinant adeno-associated viral vectors. In: Dracopoli N et al (eds). Current Protocols in Human Genetics. John Wiley: New York, 1996, pp. 12.11.11–12.12.33

    Google Scholar 

  49. Diviacco S et al. A novel procedure for quantitative polymerase chain reaction by coamplification of competitive templates Gene 1992 122: 313–320

    Article  CAS  PubMed  Google Scholar 

  50. Zentilin L, Marcello A, Giacca M . Involvement of cellular double-strand DNA break-binding proteins in processing of recombinant adeno-associated virus (AAV) genome J Virol 2001 75: 12279–12287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from MIUR Italy and CNR Italy to MG and from MURST and AIRC to FB. We are grateful to J Kleinschmidt for the pDG plasmid and to B Boziglav and ME Lopez for excellent technical assistance.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deodato, B., Arsic, N., Zentilin, L. et al. Recombinant AAV vector encoding human VEGF165 enhances wound healing. Gene Ther 9, 777–785 (2002). https://doi.org/10.1038/sj.gt.3301697

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3301697

Keywords

This article is cited by

Search

Quick links