Measurement of F(2)-isoprostanes as an index of oxidative stress in vivo

Free Radic Biol Med. 2000 Feb 15;28(4):505-13. doi: 10.1016/s0891-5849(99)00264-6.

Abstract

In 1990 we discovered the formation of prostaglandin F(2)-like compounds, F(2)-isoprostanes (F(2)-IsoPs), in vivo by nonenzymatic free radical-induced peroxidation of arachidonic acid. F(2)-IsoPs are initially formed esterified to phospholipids and then released in free form. There are several favorable attributes that make measurement of F(2)-IsoPs attractive as a reliable indicator of oxidative stress in vivo: (i) F(2)-IsoPs are specific products of lipid peroxidation; (ii) they are stable compounds; (iii) levels are present in detectable quantities in all normal biological fluids and tissues, allowing the definition of a normal range; (iv) their formation increases dramatically in vivo in a number of animal models of oxidant injury; (v) their formation is modulated by antioxidant status; and (vi) their levels are not effected by lipid content of the diet. Measurement of F(2)-IsoPs in plasma can be utilized to assess total endogenous production of F(2)-IsoPs whereas measurement of levels esterified in phospholipids can be used to determine the extent of lipid peroxidation in target sites of interest. Recently, we developed an assay for a urinary metabolite of F(2)-IsoPs, which should provide a valuable noninvasive integrated approach to assess total endogenous production of F(2)-IsoPs in large clinical studies.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.
  • Review

MeSH terms

  • Animals
  • Biomarkers
  • Dinoprost / analogs & derivatives*
  • Dinoprost / analysis*
  • Dinoprost / blood
  • Dinoprost / urine
  • Humans
  • Lipid Peroxidation*
  • Oxidative Stress*

Substances

  • Biomarkers
  • Dinoprost