Distribution of oscillatory components in the central retina

Doc Ophthalmol. 2000;100(2-3):185-205. doi: 10.1023/a:1002783719958.

Abstract

This study examines the characteristics and the naso-temporal asymmetries of the higher-order oscillatory components of the multifocal electroretinogram (mERG). The magnitude of the mERG asymmetry and the mechanisms which produce it have not been studied previously. We recorded the mERG from seven normal observers using slow multifocal flicker and response filtering of 10-300 Hz. This permitted, without additional filtering, examination of the dominant first order component and the oscillation-rich components in the first and second order kernels. The oscillatory components in the two kernels had multiple peaks separated by about 6.8 ms, similar to those of conventional oscillatory potentials. Naso-temporal asymmetry of the three response components was analyzed in three groups (concentric rings around the fovea) spanning 1.5-10 deg of retinal eccentricity. The oscillation-rich components were, on average, approximately 14% larger in amplitude in the temporal retina than in corresponding nasal locations (p < 0.05) while the dominant first order component was not asymmetrically distributed. We tested the hypothesis that the asymmetry could be modeled as a combination of a retinal component (RC) and an optic nerve head component (ONHC) which varies in latency as a function of distance from the optic disc. We found that both oscillatory components and the dominant first order response could be decomposed into RCs and ONHCs that are symmetrically distributed. Thus, it appears that the naso-temporal asymmetries of the oscillation-rich components are produced primarily by the relative alignment and enhancement of RC and ONHC wavelets in the temporal retina, and misalignment and partial cancellation in the nasal retina.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Adult
  • Electroretinography / methods*
  • Humans
  • Optic Disk / physiology
  • Photic Stimulation
  • Retina / physiology*
  • Vision, Ocular