Basal deposits and drusen in eyes with age-related maculopathy: evidence for solid lipid particles

Exp Eye Res. 2005 Jun;80(6):761-75. doi: 10.1016/j.exer.2004.09.017.

Abstract

Neutral lipid, including esterified cholesterol, and apolipoproteins B and E are abundant in basal deposits and drusen of aged and age-related maculopathy (ARM) eyes. The principal component of basal linear deposit (BlinD), a specific ARM lesion, is membranous debris, which if actually derived from membranes cannot account for extracellular neutral lipid. We therefore used a lipid-preserving ultrastructural method to obtain improved images of membranous debris. Maculas from 44 human donors (71-96 yr) were preserved <7.5 hr after death. Blocks were post-fixed in 2% osmium or osmium-tannic acid-paraphenylenediamine (OTAP) to preserve neutral lipid for thin-section transmission electron microscopic (TEM) examination. Solid particles identified by OTAP were considered closest to the in vivo state of extracellular lipids. Micrographs were examined for intermediate forms, with greatest weight given to comparable images from different preparations of same or fellow eyes. Twenty eyes of older adults (12 with ARM including fellows treated with photodynamic and radiation therapies) had adequately preserved extracellular lipid. The exterior surface of membranous debris was thicker and more electron-dense than basal infoldings of retinal pigment epithelium (RPE) cells. By OTAP, individual membranous debris profiles were solid (diameters, 80-200 nm) and formed tracks across or aggregations within basal laminar deposits. Solid particles and/or pools of neutral lipid were visible in BlinD and drusen. When processed to preserve lipid, membranous debris resembles neither membranes of surrounding cells nor vesicles possessing aqueous interiors but rather solid particles. These results are consistent with recent evidence implicating lipoprotein particles of intra-ocular origin as a potential source of neutral lipids, including esterified cholesterol, in the specific lesions of ARM.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Aged
  • Aged, 80 and over
  • Choroidal Neovascularization / pathology
  • Female
  • Fluorescein Angiography / methods
  • Humans
  • Hypertrophy
  • Lipids / analysis*
  • Macular Degeneration / pathology*
  • Macular Degeneration / therapy
  • Male
  • Membranes / pathology
  • Microscopy, Electron / methods
  • Pigment Epithelium of Eye / pathology
  • Retinal Drusen / pathology*

Substances

  • Lipids