Model for laser Doppler measurements of blood flow in tissue

Appl Opt. 1981 Jun 15;20(12):2097-107. doi: 10.1364/AO.20.002097.

Abstract

A theory is developed which relates quasi-elastic light scattering measurements to blood flow in tissue micro-vasculature. We assume that the tissue matrix surrounding the blood cells is a strong diffuser of light and that moving erythrocytes, therefore, are illuminated by a spatially distributed source. Because the surrounding tissue is considered to be stationary, Doppler shifts in the frequency of the scattered light arise only from photon interactions with the moving blood cells. The theory implies that the time decay of the photon autocorrelation function scales proportionally with cell size and inversely with mean translational speed. Analysis of multiple interactions of photons with moving cells indicates the manner in which spectral measurements additionally are sensitive to changes in blood volume. Predictions are verified by measurements of particle flow in model tissues.