The Function of SPARC as a Mediator of Fibrosis

Open Rheumatol J. 2012:6:146-55. doi: 10.2174/1874312901206010146. Epub 2012 Jun 15.

Abstract

Fibrosis is a common end-point of a number of different diseases such as hypertension, diabetes, liver cirrhosis, and those associated with chronic inflammation. Fibrosis is characterized by excessive deposition of extracellular matrix that interferes with normal tissue architecture and function. Increased expression of secreted protein acidic and rich in cysteine (SPARC) in fibrotic tissues has been reported in numerous studies. SPARC is a 43 kDa collagen-binding protein secreted from several different cell types into the extracellular matrix and has been shown to be anti-proliferative and counter-adhesive in vitro. SPARC is a matricellular protein; meaning SPARC is secreted into the extracellular space but does not serve a structural function. Instead, SPARC modulates interactions between cells and the surrounding extracellular matrix. In animal models of fibrotic disease and in human fibrotic tissues, elevated expression of SPARC has been reported in many tissues including heart, lungs, kidneys, liver, dermis, intestine, and eyes. In this review, we will summarize current studies that have examined the expression and functional importance of SPARC in various animal models of fibrosis and in human tissues. Although cellular mechanisms of SPARC in fibrosis remain to be fully elucidated, the studies summarized here provide impetus to further explore the efficacy of SPARC as a potential target for reducing fibrosis.

Keywords: Collagen; disease.; extracellular matrix; matricellular protein.