Intracellular trafficking of tropoelastin

Matrix Biol. 1998 Aug;17(4):245-54. doi: 10.1016/s0945-053x(98)90078-6.

Abstract

Elastin is secreted as soluble tropoelastin monomers which are then cross-linked in the presence of extracellular microfibrils to form insoluble elastic fibers. Although the secretion of tropoelastin is thought to be mediated and targeted by an intracellular chaperone complex, the intracellular route taken by this protein and the role of such a chaperone complex remain undefined. In the present study, the specific pathway of tropoelastin secretion was investigated in fetal bovine chondrocytes and ligamentum nuchae fibroblasts by immunofluorescence staining and immunoprecipitation of tropoelastin following treatment with secretion-disrupting agents. In untreated cells, tropoelastin is secreted in approximately 30 min. In both cell types, brefeldin A and monensin inhibited secretion of tropoelastin and caused an intracellular accumulation of the protein in the fused ER/Golgi compartment or in the Golgi stacks, respectively. Incubations of longer than 1 h in the presence of brefeldin A result in eventual degradation of tropoelastin in the ER/Golgi compartment (Davis and Mecham, 1996). In contrast, the tropoelastin trapped in the Golgi as a result of monensin treatment steadily accumulated. Agents that elevate intracellular pH, such as ammonium chloride and chloroquine, also caused an intracellular accumulation of tropoelastin which appeared by immunofluorescence staining to be localized in secretory vesicles and/or endosomes. Since weak bases and ionophores alter the morphology of vacuolar compartments, the effect of bafilomycin A1 on tropoelastin secretion was also investigated. This vacuolar H+-ATPase inhibitor prevents acidification of the trans-Golgi network and endosomal compartments without disrupting intracellular organelle formation. When the elastogenic cells were treated with bafilomycin A1, tropoelastin secretion was diminished and an intracellular accumulation of tropoelastin was detected in the trans-Golgi network and small secretory vesicles. These results suggest that tropoelastin may be diverted from the constitutive pathway after exiting the Golgi and instead targeted to an acidic compartment prior to transport to the cell surface. The identity and role of such a compartment in the sorting and/or trafficking of tropoelastin has yet to be determined.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Biological Transport
  • Cattle
  • Cell Compartmentation*
  • Cell Line
  • Fibroblasts / metabolism
  • Fibroblasts / ultrastructure
  • Fluorescent Antibody Technique, Indirect
  • Tropoelastin / metabolism*

Substances

  • Tropoelastin