COMMUNICATIONS

THE CAUSE AND RESULTS OF OBSTRUCTION OF THE CENTRAL ARTERY OF THE RETINA: A STUDY OF ELEVEN CASES

BY

H. V. COVERDALE
NEW ZEALAND

Introduction

George Coats,4,6 (1905 and 1913), in reporting on three cases of obstruction of the central artery of the retina which he had examined pathologically, collected all those published in which a pathological examination had been made, and showed that, while the majority were best explained by disease of the vessel wall, with or without thrombosis, two of his own cases were undoubtedly embolic in origin.

There is no difficulty in understanding the onset and most of the phenomena of obstruction if gross disease of the artery wall is present, but a large proportion of the cases occur in young adults whose arteries must be presumed to be healthy. It is in these that pathology is of little assistance, owing to the absence of opportunity for obtaining the eye. Only two of Coats's collected cases were under 40 years of age and none was under 30 years. The value of the specimens, moreover, was inevitably diminished by considerable delay between the onset of obstruction and the pathological examination.
It is generally admitted that, in acute obstruction, as Coats' (1905) pointed out, three processes, in combination or separately, may be responsible:—

1. Embolism.
2. Endarteritis.
3. Thrombosis.

In recent years a fourth process, spasm of the arterial wall, has been put forward as the most satisfactory explanation of certain types of case.

Regarding the relative importance of any one of these processes, there appears at present to be no unanimity of opinion, excepting, perhaps, in cases occurring in later life in which arterial disease is known or may be presumed to be present. Here, endarteritis with thrombosis, is usually considered to be the cause.

The diagnosis between these possibilities may be greatly assisted by the history and by the general physical condition of the patient but, as Reimar pointed out, it must chiefly depend on the changes observed in the retinal vessels themselves, changes which vary from case to case and from day to day and are difficult both to interpret and to classify.

The literature consists largely of descriptions of cases and comments upon particular phenomena observed, but most are chosen for publication on account of some point of interest or obscurity and are, for analytical purposes, unsatisfactory. The terms used, moreover, are sometimes ambiguous. For example, words such as empty or collapsed, so frequently employed in reference to the ophthalmoscopic appearance of vessels, are too dogmatic. In encountering them, the suspicion that the vessels were neither empty nor collapsed is sometimes justified and an important observation thereby invalidated.

For the above reasons, a statistical examination of reported cases would have only limited value. The sex, however, and the age, excepting two cases recorded on account of their unusual youth, may be considered unaffected by selection, and I have analysed these two points in 51 cases in which the information is supplied.

The cases upon which my thesis is based are not selected, but consist of all those treated at Moorfields Hospital during the eight months February to September of 1928, making an incidence of 1 in 2,549 patients. Five of them were seen within 24 hours of the occurrence of obstruction. For permission to publish my observations on these cases, I wish to record my grateful thanks to Sir William Lister for cases Nos. 1, 6, 8 and 9, to Mr. Foster Moore for case No. 7, to Mr. Juler for cases Nos. 2 and 5, to Mr. Goulden for case No. 4, to Mr. Whiting for case No. 11, to Mr. Doyne for case No. 10, and to Mr. Scott for case No. 3.
Obstruction of the Central Artery of the Retina

I propose, firstly, to consider the history and general condition of the patients and then the changes seen in the eye, referring, as I proceed, to observations and opinions recorded in the literature. Lastly, I shall discuss the effects of arterial obstruction on the nutrition and function of the retina.

As I shall, where possible, discuss the cases collectively rather than individually, I have put the case notes together as an appendix and shall refer to them by number.

Analysis of Age and Sex.

<table>
<thead>
<tr>
<th>Age Group</th>
<th>In 51 recorded cases</th>
<th>In own cases</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Male</td>
<td>Female</td>
</tr>
<tr>
<td>Under 10 years</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>10-20 years</td>
<td>2</td>
<td>9</td>
</tr>
<tr>
<td>20-30 years</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>30-40 years</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>40-60 years</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Over 60 years</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>28</td>
</tr>
</tbody>
</table>

There is substantial agreement between the two sets of figures and three points emerge.

1. Taking the figures as a whole, the two sexes are about equally affected.
2. In young adults it is more common in females and in later life more common in males.
3. It is as common in young adults as in later life.

Physical Condition

Four cases had mitral disease, two mitral and aortic, two aortic disease alone, and three revealed no evidence of cardiac abnormality. All the cases with cardiac disease were well compensated excepting No. 5, and the patients professed to be in good health. Those with apparently healthy hearts were aged 16, 21 and 52 years. The urine in all cases revealed no albumen or sugar. In cases 2 and 8 a Wassermann reaction was done and found to be negative. The blood pressure was low in the imperfectly compensated case, No. 5, but in other cases was not abnormal. In the female cases the menstrual periods were normal.

The large proportion with endocarditis points to embolism as the cause. That many cases occur in young people without any sign of endocarditis is a well recognised fact, and it is possible that my series is unusual in the small proportion (2 in 7 under 40 years) shown. I shall return to this question when dealing with spasm.
History

The onset was sudden in all cases except in the bilateral one, No. 11.

There was a history of a temporary obscuration in this bilateral case. No other case admitted having had previous obscurations or trouble of any kind with the eyes. The obstruction seems to have occurred at various times without reference to any particular activity. Three cases noticed the loss of vision on waking in the morning, but it is doubtful whether any significance can be attached to such a small proportion. They were all young patients with cardiac disease, and it is possible that strains thrown on the heart during disturbed sleep (MacWilliam) favour the production of emboli.

The history of case No. 1 is important. At first the whole field of vision was lost, but later the upper half returned. This is a very common finding in obstruction of one division of the central artery. Benson, Schnabel and Sachs, Hird and Harrison Butler report cases, and consider them to be embolic. There can be little doubt that, in case No. 1, the obstruction was caused by an embolus, firstly at or before the bifurcation and then, after an interval too short to affect vision permanently, further on in the branch where it was found. Such a history has a bearing on prodromal attacks and I shall refer to it again later.

The Retinal Vessels

The information derived from the vessels is very perplexing and has led to much uncertainty. To some extent this may be due to the fact that most patients are not seen until some days after the onset and then only at intervals of several days or weeks. I shall discuss the changes under the following headings and shall then shortly analyse the features presented by individual cases.

1. The circulation.
 (a) The calibre of the arteries.
 (b) Pulsation.
 (c) Beading of the blood column.

2. Appearances of obstruction.

I shall refer mainly to the arteries as no changes of importance, except beading, were observed in the veins.

The Circulation

It is a remarkable fact that some circulation is always retained or regained. If it stops entirely, as in Case No. 10, it soon returns to some extent, and it is rare to see stagnant beaded blood in all the main branches. This point was discussed at length by Coats (1905), who concluded that it was best explained by anastomoses
between the retinal and ciliary arteries around the disc, a suggestion first made by Knapp. Schnabel and Sachs, on the other hand, argued against this and favoured incomplete embolism without thrombosis. Reimar discussed all the possibilities and found none satisfactory.

(a) **The calibre of the arteries.**

A small lumen indicates a restricted flow, but, as Parsons has pointed out, a normal lumen is no indication of the amount of circulation, for this depends also on the rate of flow which can only be seen when the red cells have aggregated. In the production of constrictions, the blood supply, the nutrition of the vessel walls, the intraocular pressure and the constrictor mechanism all may play a part and it is impossible to determine the importance of any one factor. Observation of a long series of cases might enable some classification to be made, but, until it is possible to examine pathologically several eyes of suitable cases soon after the onset, there will probably be no satisfactory solution.

The constrictions seen in advanced retinal arterio-sclerosis cannot be considered to bear on those seen in young people after acute obstruction. That there is not necessarily any constriction where a visible obstruction is present is shown in cases Nos. 1 and 2 (drawings).

In many of my cases, constrictions of small branch arteries occurred at some stage. These could always be explained on the grounds of defective blood supply. When red cells are clumped together they will naturally tend to keep to the main channel as long as possible. Cases Nos. 5 and 6 showed local constrictions on the disc. Case No. 5 was of a type sometimes described (Knapp, Benson, Lawson, Reimar) in which the arteries, small on the disc, widened out near the disc margin. This phenomenon has been referred to as evidence of cilio-retinal anastomoses (Coats¹ (1905), Parsons), but Schnabel and Sachs and Reimar thought it due to disease of the vessel walls. This patient was aged 19 years, so disease of the vessel walls was exceedingly unlikely. If it were due to anaemia of the walls alone, it would scarcely extend so frequently only to the disc margin. It is not a common feature of retinal arterio-sclerosis. It appears to be a late phenomenon—11 days in case of No. 5—and while it may be explained by assuming a small central circulation from incomplete obstruction or anastomoses within the nerve, and further anastomoses at the disc margin, the fact that the enlargement of the inferior division in this case occurred well inside the disc margin suggests that some other factor is responsible, possibly an active localised spasm secondary to embolism.

Case No. 6 is more difficult to explain although, up to a point, it resembles No. 5. As the superior division was much more affected than the inferior, the obstruction would appear to have been at the
main bifurcation just out of view within the nerve head. The cork-screw-like appearance of the blood column in the superior division, when first seen, was probably due, as in case No. 9 mentioned later, to slowing of the blood column and aggregation of the red cells. After a week, it would seem that the remaining circulation diminished on the disc, but was augmented by anastomoses at the disc margin (v. drawing). On the 8th day, fresh anastomoses in the nerve enabled the artery on the disc to fill again, but anaemia began to affect the superior nasal artery (v. drawing). A week later, the inferior division was found to be almost thread-like and conducted no blood. It was perhaps affected by secondary thrombotic changes at the bifurcation, but the absence of anastomoses is unexplained. As in case No. 5, it must be admitted that late secondary spasm of the vessel wall provides an alternative and less complicated explanation, though it is difficult to understand why a spasm should pass off in the superior division, in which the circulation was most defective, and obliterate the inferior division. This case (v. drawing) illustrates a point which I have frequently observed in the branch arteries in obstruction, namely, that when the blood supply to a branch is so severely limited as to cause the vessel to contract almost to obliteration, the contraction begins proximally at the junction with the main stem. It might be argued that an active localised spasm constricts the vessel and impoverishes the blood supply, but I do not think that the question of spasm need be introduced. I explain the phenomenon by supposing that, when the circulation in a branch slowly fails, the intraocular pressure blocks the capillaries supplied by it and prevents outflow. Blood no longer enters the vessel but tends rather to be withdrawn by the beaded blood passing along the main channel. The pressure in it therefore becomes greatest at the periphery and contraction occurs first near the parent artery.

(b) Pulsation.

When the circulation is not interrupted, the main arteries can be seen to pulsate vigorously when pressure is applied to the globe. Knapp first noticed the absence of pulsation when there was obstruction. Presence of pulsation implies that there is no gross obstruction to the blood flow, and its absence is evidence of definite obstruction, but is no guide to the extent. Rapid refilling suggests that a blood current is still present.

In case No. 9 it was very difficult to make the main arteries collapse on applying pressure to the globe. I interpret this as indicating sclerosis of the vessel wall.

c) Beading of the blood column.

Beading of blood in the arteries and veins has been studied by Friedenwald. It is often seen in the veins, less commonly in the
arteries. It appears to be an aggregation of the red cells due to slowing of the circulation and is, to some extent, an index of the rate of circulation. A moderate slowing will cause beading in the veins only, a more marked slowing will cause it in the arteries as well. Also, when the circulation is very slow, there are clear cut beads, when it is faster, only small granules are with difficulty seen. Often, when there is a defective circulation as determined by absence of pulsation, there is no beading at all.

That the circulation may still be present without pulsation and without beading is shown by case No. 8. On first examination, the arteries were of almost normal calibre and appearance and showed neither beading nor pulsation on pressure, except in the healthy cilio-retinal artery which pulsed freely. A week later, without any other change, the first macular branch of the superior temporal artery was seen to contain fine granules of blood moving rapidly. The granules were difficult to see, but unmistakable. In the superior temporal artery no granules were seen, but a fair circulation, too rapid for aggregation, must have been present. That absence of beading does not necessarily mean that circulation is present, is shown by the normal appearance of the artery distal to the obstruction in case No. 1.

A curious appearance was seen in case No. 9 (v. drawing). The blood column was slowed and beaded as it emerged from the disc, but the arteries were of nearly normal calibre. In the superior division the blood flowed in a corkscrew-like manner without any segmentation until the next bifurcation. The outer wall of the artery was straight and unaffected, and the lumen was not responsible because the bends in the blood column were not constant. In the inferior temporal artery the blood column was even along the lower border of the lumen, but appeared very irregular above. That it was impossible to collapse the artery with reasonable pressure, showed that sclerosis was present and irregularities in the lumen possible, but the irregularities seen appeared constantly to change and may conceivably have been due to an effect of red cell aggregation.

Appearances of Obstruction

Cases No. 1 and No. 2 showed clear-cut white areas in the arteries (drawings). There was no significant change in the diameter of the vessels, either as a whole or at the affected part. The only abnormality was an abrupt, clear-cut change from red to white, not a plasma-like whiteness but an opaque whiteness, with cessation of the circulation as determined by absence of pulsation on pressure.

In case No. 1 the obstruction slowly canalised (v. drawings) and pulsation returned, leaving only a spot of deep red in the vessel.
In case No. 2 it passed on, after massage, to a point in the inferior temporal artery where it remained a few hours before passing further out to the periphery (v. drawings). In this case also a mark of deeper red was left in the vessel. This appearance is seldom reported, and, in the literature, I have found only 4 definite cases amongst 51 (Reimar, Crisp, Harrison Butler, Mules).

Reimar's case (age not stated) had a thin stream of blood down the middle of the opacity. The stream widened and the obstruction disappeared. It had probably canalised when he first saw it. He considered that an embolus in a vessel should be obvious as such, and attributed the appearance in question to endarteritis of the posterior wall, so that, when the vessel filled again, the obstruction could not be seen.

Crisp saw his patient, a girl aged 14 years, on the day after the onset. The appearance, as drawn and described, was almost identical with that of case No. 1. Sometime between the 4th and 18th day the obstruction disappeared, leaving a narrow red strip across the vessel. There was no evidence of endocarditis. He called the condition spasm and, in spite of its normal size, regarded the vessel as being empty.

Harrison Butler's patient, a youth aged 21, was seen two and a half hours after the onset. The white area was at first bifurcation on the superior temporal artery and, peripheral to it, the blood was beaded and motionless. Five hours later the obstruction moved further to the periphery and gave the same appearance. Harrison Butler refers to the vessel being empty at the site, but the drawing shows the diameter unchanged. Endocarditis was present.

Mules's case, a girl of 21, was seen within an hour. The lower division to beyond the first bifurcation was of full size but white, with sharp demarcation between the white and the red portions of the artery. The eye was massaged at once and, on looking again, the artery was found to be normal. No cardiac disease was found.

These 6 cases may be diagramatically represented. The appearance undoubtedly represents an obstruction which either remains for a time and becomes canalised, or passes on to a point further along the vessel or out to the periphery. It cannot therefore be
Obstruction of the Central Artery of the Retina

an opacity of the vessel wall, nor can it be an ordinary thrombosis or patch of sclerosis. As the diameter is not affected, it cannot be a localised spasm. A vessel, moreover, especially when subjected to intraocular pressure, must accommodate itself to the volume of its contents, so, in these cases, can only be empty if flattened in one diameter only. But, if the lumen is empty, the elasticity of the artery wall should cause a general contraction. The appearance must represent the site of an embolus, but the whiteness is not easily explained. That the red cells can clump together suggests that it may be due to plasma with an increased content of leucocytes and platelets.

Rubert had the opportunity of examining pathologically a case of embolus (age and clinical details not given) 5 days after the onset, and found a homogeneous hyaline plug in the central artery in front of the lamina cribrosa. The artery wall was normal.

The Cause of the Retained Circulation

There is anatomical, pathological and perimetric evidence for very small channels connecting the choroidal and retinal circulations in and around the nerve head. The appearance of such an anastomosis was seen in case No. 7 (v. drawing). There is also pathological evidence for embolism with incomplete obstruction and without thrombosis. (Coats (1905), Schnabel and Sachs).

In my cases, if I exclude:—(1) those with probable endarteritis, and (2) those in which the obstruction appeared to have passed the bifurcation, cases Nos. 5, 6 and 8 remain for explanation.

In case No. 5, the calibre of the arteries was somewhat reduced and the circulation, although sufficient at first to lead to beading only in the veins and small arteries, gradually became more defective. The obstruction therefore did not pass on.

The artery supplying the healthy retina was probably not a ciliary vessel, but an early branch of the central artery. Clinical appearances suggested that it was slightly involved in the obstruction, which would therefore seem to have been in the region of the lamina cribrosa far enough back to give anastomoses full play. The gradual decrease in the circulation is best explained by supposing that the initial obstruction only gradually became complete during a week or 10 days, the final circulation being derived from anastomoses.

Case No. 6, referred to under “calibre of arteries,” showed a fairly large volume of blood moving in the central artery at its emergence from the disc. Because:—

(1) The obstruction was probably at the bifurcation too far forward for effectual anastomoses to be present in the nerve.
(2) Only 24 hours had elapsed since the onset.
(3) The circulation gradually dwindled until, after two weeks, it had almost ceased.

It seems necessary to suppose that at first the obstruction did not occupy the whole lumen. The eventual restoration of circulation points to anastomoses.

Case No. 8 showed an absence of pulsation in main arteries of only slightly reduced calibre, indicating in this case, as I have shown, that the circulation, although obstructed, was too rapid for beading to occur. While it is probable that the obstruction was incomplete, four days had elapsed and it is just possible that anastomoses supplied the existing circulation.

Summary Analysis of Individual Cases

Case No. 1.—The history and appearances, already discussed, point to embolism, firstly before the bifurcation and then just beyond it. The age and mitral stenosis confirm.

Case No. 2.—This was undoubtedly due to an embolus which stopped at the lamina cribrosa or main bifurcation and then passed on to where the inferior temporal vein crossed the artery, ultimately passing out to the periphery. The age and the mitral stenosis confirm this assumption.

Case No. 3.—The fact that the two small arteries which were unaffected and supplied the macula left the main stem shortly before the bifurcation, points to the obstruction having occurred just at the bifurcation. There was no such central obstruction when the case was first seen, so it must have passed on, probably down the inferior temporal artery which was most and longest obscured by oedema. Only an embolus could explain the findings. The age and the mitral disease are also in agreement.

Case No. 4.—The superior temporal artery only was affected. When the case was first seen, the obstruction had probably passed on to the periphery, as retinal pallor and a field defect were the only lesions found. This, with the age and presence of mitral stenosis, is best explained by temporary embolism.

Case No. 5.—I have referred to this case under "Calibre" and "Cause of retained circulation." The clinical observations, supported by the advanced cardiac lesions and the age, point to embolism.

Case No. 6.—I have referred to this case also under "Calibre" and "Cause of retained circulation." and concluded that the obstruction at first only partly occluded the superior division at the bifurcation, just out of view in the nerve-head. Later, secondary processes obstructed the inferior division. Embolism seems the most satisfactory explanation of this difficult case. It is supported by the age but not by the cardiac condition. Although the changes
in calibre suggest that secondary localised spasm may have occurred, nothing was observed at the first examination to warrant the view that the obstruction was originally caused by spasm rather than by embolism.

Case No. 7.—A healthy young girl with an apparently normal heart. Only the inferior division was definitely affected. Although the obstruction, as determined by beading and absence of pulsation, remained about a week, it could not be seen because the bifurcation into temporal and nasal branches occurred in the physiological cup and was obscured. As the whole of the inferior division was affected, this must have been the site of the obstruction.

The arteries were not greatly diminished in size yet the opportunity for effective anastomoses seemed small. The obstruction was probably, therefore, incomplete. The observations are best explained by embolism, but the cardiac condition is against this. A spasm would scarcely have remained confined to such narrow limits and have persisted for a week.

Case No. 8.—I have referred to this case under "Cause of retained circulation." It is uncertain whether the obstruction was partial or whether it was complete with good anastomoses. The obstruction remained and, when the patient left hospital two weeks after the onset, pulsation had not returned. The only evidence in favour of embolism was the well-marked mitral and aortic disease. There were some appearances in the other eye suggestive of old haemorrhages, and vascular disease cannot therefore be excluded.

Case No. 9.—The arteries on the disc were of fair calibre, but the circulation slow and beaded. The presence of arterio-sclerosis was suggested by the great difficulty in collapsing the arteries, and by the heart block. On the other hand, signs of aortic disease were present. Like No. 8 this is a doubtful case.

Case No. 10.—A complete obstruction lasting less than 24 hours in a man of 52 with an apparently normal heart suggests anaemia from a temporary fall of blood pressure in arteries narrowed by endarteritis. But, in this case, the arteries on the disc, ten minutes after the onset, were white and of about normal calibre, with complete stasis of circulation. The appearance, therefore, was similar to that in Case No. 2, discussed under "Appearances of Obstruction," and, consequently, in spite of the lack of evidence of cardio-vascular disease, there is some reason for attributing the obstruction to embolism.

Case No. 11.—The obstruction was bilateral, complete and permanent. In a man of 65 with cardio-vascular disease, this is best explained by endarteritis with thrombosis. The more gradual onset and history of a prodromal obscuration differentiates this case from the remainder.
Endarteritis

Endarteritis cannot safely be inferred in the retina from its presence elsewhere and is only obvious in its late stages. It does not follow that because vascular disease is present that it is the cause of the obstruction, and the changes in the vessels and circulation, as observed in cases 8, 9, and 10, do not enable a diagnosis of embolism to be excluded.

Prodromal Attacks

Cases with prodromal attacks are probably less common than the number published would seem to imply. They are usually patients past middle life and are best explained by a temporary fall of blood pressure causing anaemia in arteries narrowed by endarteritis. (Parsons, Coats4 (1905), Nettleship). Cases of embolic obstruction of one division only of the central artery which give a history of temporary complete blindness in the eye (case No. 1), or a case such as No. 2, undoubtedly embolic, in which a large part of the visual field was restored, show that an embolus can cause a temporary loss. Some prodromal obscurations may be caused in this way.

Spasm

The question of spasm of the artery has been introduced to explain those cases which have prodromal obscurations and those in which no cardiac lesion is found. Bruner's case is one of the most convincing. There were as many as ten obscurations in a day and, during the attacks, all the arteries were reduced to mere threads. A thread-like appearance of the arteries occurring at once is an important point of difference between spasm and other causes. My cases showed that when an artery is obstructed by embolus no significant alteration in calibre occurs at an early stage. While, clinically, it may sometimes be impossible to make such a distinction, it is advisable to consider spasm as being of two types.

1. Primary, occurring in cases in which there is no demonstrable arterial lesion.

2. Secondary, occurring in consequence of arterial disease or injury such as embolism.

Primary spasm is a physiological possibility and can be induced in rabbits by injecting adrenaline into the vitreous (Redslob). It may be held to explain a certain small proportion of cases, but in the eleven under consideration nothing was observed to warrant its introduction.

It is noteworthy that the retinal artery is rarely, if ever, affected in Raynaud's disease. Secondary spasm offers a convenient explanation of the changes in calibre which occurred in cases Nos.
Obstruction of the Central Artery of the Retina 541

5 and 6. If Coats's theory that the retained field is due to anastomoses is a mistaken one and anastomoses at the disc margin do not occur, then these changes in calibre must be due to secondary spasm.

The retention of field is strong evidence for the presence of collateral vessels from the short ciliary arteries, such as the one seen in case No. 7 (drawing), but it does not necessarily follow that cilio-retinal anastomoses occur. The point must, for the present, be left open.

Effects of Obstruction

Changes in the Vessels

Cases Nos. 1 to 6 were last examined not less than two months after the onset of obstruction. These cases showed that when an artery has been obstructed long enough to lead to permanent changes in the retina, it ultimately becomes pale and narrowed to a size in appearance about one half that of normal, and not varying greatly from one case to another. Such an artery pulsates feebly on pressure. According to Parsons, this narrowing is due to the vessel accommodating itself to the volume of its contents by a thickening of its wall. In cases Nos. 5 and 6, the ultimate circulation was probably derived from anastomotic channels and may well have been of small amount, either on that account or on account of the loss of function of the retina supplied. The smallness of the circulation could therefore be explained as Parsons suggests. In cases Nos. 1, 2, 3 and 4, however, the obstruction passed on, leaving the arteries normal or nearly normal in size. It was only after some weeks or months that they became narrowed. In cases Nos. 3 and 4 only the superior temporal artery was affected and, in these two cases, loss of function of the retina supplied, as revealed by the visual field defect, could account for the ultimate smallness of the circulation. In cases Nos. 1 and 2, the field of vision showed only a partial defect and the explanation does not hold good. In these two cases, the smallness of the vessels must have been due to the nutrition of their walls having been permanently affected by the original obstruction, degenerative changes ensuing.

The fine white lines just outside and parallel to the vessels, occasionally reported (de Schweinitz), and noted in case No. 6 seven months after the obstruction, probably represent a peri-arteritis and peri-phlebitis which is best explained on nutritional grounds.

Changes in the Retina

Pallor of the central retina is the chief objective characteristic of this disease. It is not certain whether it is due to oedema or to parenchymatous degeneration of the nerve fibre and ganglion cell layers. That the latter occurs, at all events in cases of permanent
obstruction, has been shown by Coats4 (1905) who, however, considered that no case had been pathologically examined early enough to prove definitely whether the haze seen clinically was due to such degeneration or to oedema. In his second paper5 (1913), he argued in favour of its being due to ischaemic necrosis. Rubert, on the other hand, in his case examined early, found oedema of the inner layers.

The appearance is well illustrated in Hamblin's drawings and has the following characteristics:

1. It is easily recognisable as early as two and a half hours after the obstruction (case No. 2). In the early stages it is most obvious in the neighbourhood of and overlying the main vessels, and appears in cirrus cloud-like striae which follow the general arrangement of the nerve fibres.

2. By about the second day, if the obstruction remains, a denser pallor which increases for several days is seen chiefly in the macular neighbourhood.

3. After a variable period of about 7 (case No. 3) to 14 (case No. 1) days, the haziness begins to disappear and the vessels show up more clearly. But the dense pallor in the central fundus remains for some weeks longer.

At this stage in case No. 6, in which there was no perception of light, spots of pearly, vesicular appearance were seen scattered over the central area. They were no doubt similar to the white spots noted by de Schweinitz, Reimar and Stephenson at a late stage and were probably a manifestation of necrosis of the inner layers. At this stage, also, the disc becomes pale.

4. The appearance of the macula varies within limits from case to case, but, except in rare instances, shows as a red spot which may be small with blurred edges or may be very clear cut and simulate a hole or haemorrhage. Case No. 6 was an example of the latter. That there was no hole was shown by the pearly vesicular spots extending on to the macula, and by the subsequent return to the normal appearance.

5. If a portion of the retina is supplied by a cilio-retinal artery, the healthy retina is in most cases sharply demarcated from the pallor, in contrast with gradual transition at the periphery.

6. Eventually the colour of the retina returns to normal. Clinically the pallor is seen as two processes as described.

(1) An early haze associated firstly and chiefly with the vessels but extending over the central fundus.

(2) A subsequent denser central opacity which for a time consists partly of (1) but which remains as a clear white area after (1) has disappeared.

That the early pallor is not due to degeneration of the nervous elements of the retina is shown by:
Obstruction of the Central Artery of the Retina 543

(a) The early onset.
(b) The retained field of vision in cases Nos. 1 and 2.

Moreover, commotio retinae can cause a pallor equally dense, and a similar appearance along the vessels is sometimes seen, without any permanent change in the visual field, in retrobulbar neuritis and in cases of pressure on the optic nerve behind the globe. It is probably, therefore, due to oedema.

Following arterial obstruction, and against intraocular pressure, vascular dilatation cannot occur, but Lewis has shown that, in the skin, oedema is the result of an independent change in the wall in response to stimulation, increasing permeability, and is not a consequence of capillary dilatation. Whether the residual clear opacity is due to oedema or necrosis cannot be determined on the evidence available. The absence of haze suggests that it may be due to necrosis which, at this stage, may be presumed to be present.

Changes in the Visual Field.

It is a common though not constant observation that, after complete obstruction, some vision remains which is limited to the perception of hand movements or, at most, the counting of fingers in the temporal field.

Hancock reported two cases in which the retained temporal field was definitely outside the 50° circle, and suggested that the nasal retina, which extends further forward than the temporal, is nourished at the periphery by the chorio-capillaris as well as by the retinal vessels.

Coats's (1913) observations on 6 cases examined with tube fixation did not confirm this. He found that the retained field was around the disc, extending further temporally than towards fixation. He explained this as a consequence of the cilio-retinal anastomoses around the nerve head. de Schweinitz came to the same conclusion. As I have mentioned under "Spasm," such a field is evidence of collateral vessels, but not necessarily of anastomoses.

Case No. 5, in which the obstruction remained, confirms Coats's theory. Eleven days after the obstruction, some field contiguous with the blind spot was present for which the cilio-retinal artery could not have been responsible. Later, when fixation returned, the field was found to extend to about the 40° circle on the temporal side.

Similarly in case No. 8, in which also the obstruction remained,
some fixation returned on the 6th day and the field was found to be of the same type as that of case No. 5.

In cases Nos. 2 and 3, the obstruction passed on and some part at least of the restored field was due to the obstruction of some branches being, in time, so short as to enable the nutrition of the retina to be restored. It is noteworthy, however, that in case No. 3, four days after the obstruction and before the restoration of field took place, a narrow strip of percipient retina was certainly present on the nasal side of the disc.

In case No. 4, some restoration occurred by the disc but not elsewhere.

In case No. 10, half an hour after the onset of obstruction, some temporal field was present outside the 70° circle, but later all the peripheral field returned, leaving a central scotoma. The obstruction lasted only a short time and the case was therefore of the same type as No. 2. While it affords only doubtful confirmation of Hancock's theory, the latter is supported by the restored peripheral strip in case No. 1. The retention of a peripheral strip of percipient retina may be regarded as a more advanced state of the central scotoma type of field, discussed below. It is a theoretical possibility if the circulation returns before degeneration of the nerve fibres occurs, and if, in addition, two assumptions are made:—

(1) That nerve fibres are more resistant to anaemia than ganglion cells.

(2) That, at the periphery, the chorio-capillaris is capable of nourishing all the layers of the retina.

The greater resistance or better vascular supply of the nasal half of the retina may have reference to the greater phylogenetic age of these fibres.

Cases Nos. 2 and 3, in which the embolus passed on, require further consideration. In both, the field supports the ophthalmoscopic observation that the inferior temporal artery was the vessel most affected. In both, there is some general contraction of the field. In case No. 2, there is a central scotoma, and also in No. 3 there are indications that a central scotoma would have been present but for the unaffected macular artery.

The general contraction may be due merely to a raised threshold. That the restored retina in case No. 3 was not normal, was shown by the fact that, four months after the obstruction, the original healthy area could still be mapped out on the screen with a small object.

A central scotoma is rare and I have found only three cases recorded in which it was present. (Collins, Schnabel and Sachs, de Schweinitz). de Schweinitz suggested that it was due to pressure from oedema in the nerve.
OBSTRUCTION OF THE CENTRAL ARtery OF THE RETINA 545

In case No. 2, pressure in the nerve, sufficient to destroy fibres, would have caused considerable venous engorgement because the arterial obstruction was of short duration. No venous engorgement occurred, so there can be little doubt that local anaemia at the macula was the cause of the scotoma.

Consideration of the visual fields in these cases shows that degeneration need not occur, or that it may be local, causing a scotoma or sector defect, or may be general, causing complete or almost complete blindness.

The length of time that the obstruction persists is important, for, when it is short, the function of the whole or part of the retina may be restored. Alternatively, anastomoses may be too slow in forming or in accommodating themselves to the new requirements.

The position of the obstruction is also important, for, obviously, a peripheral injury may pass unnoticed, while obstruction at the bifurcation, as in case No. 6, cuts off anastomoses in the nerve and may lead to loss of all perception of light.

THE MACULA LUTEA

Six cases illustrate the blood supply of the macula. The details may be tabulated as follows:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Inferior temporal</td>
<td>Half supplied</td>
<td>6/60</td>
<td>6/6</td>
</tr>
<tr>
<td>3</td>
<td>Early branch of main artery</td>
<td>Supplied</td>
<td>6/5</td>
<td>6/5</td>
</tr>
<tr>
<td>4</td>
<td>Inferior temporal and early branch of main artery</td>
<td>Half supplied</td>
<td>6/18</td>
<td>6/6 partial fixation</td>
</tr>
<tr>
<td>5</td>
<td>Early branch of main artery</td>
<td>Not supplied</td>
<td>Counts fingers</td>
<td>6/18 partly fixation Counts fingers</td>
</tr>
<tr>
<td>7</td>
<td>Superior temporal</td>
<td>Not supplied</td>
<td>Counts fingers</td>
<td>Partial fixation</td>
</tr>
<tr>
<td>8</td>
<td>Cilio-retinal</td>
<td>Not supplied</td>
<td>Hand movements</td>
<td>6/18</td>
</tr>
</tbody>
</table>

The arterial distribution in case No. 7, in which the obstructed macular branch of the inferior temporal artery passed above the macula (Hamblin's drawing), was very unusual and made a return of vision unlikely.
It appears that:

1. The macula may be supplied by:
 - A twig from the main artery.
 - A cilio-retinal artery.
 - A branch from the superior or inferior temporal artery. In part, by any of the above.
 - A cilio-retinal artery can be present without supplying the macula.

2. Macular arteries are end arteries.
 - An anastomosis near the macula, made visible by beading of the blood, was seen in case No. 5, between the healthy branch from the central artery and the inferior temporal artery. It was probably a chance anomaly.

3. If there is any healthy circulation in the immediate neighbourhood, a gradual restoration of some central vision may occur.

The central scotoma in case No. 2 shows that the macula is the most vulnerable area in retinal anaemia. In this case, the time during which circulation was absent can be fixed at between two and a half and five and a half hours. In Wood-White's case, the circulation was seen to return after an hour, and normal vision was restored. A similar case was reported by de Schweinitz, except that a small para-central scotoma remained.

The vulnerability of the macula may be due to:

1. Precarious blood supply.
2. Highly specialised nature.
3. Late phylogenetic and ontogenetic development.

CONCLUSIONS

Cause

1. While obstruction in later life may reasonably be interpreted on clinical and pathological grounds as a consequence of endarteritis, as explained by Coats, the most satisfactory explanation of the great majority of cases, not definitely so attributable, is embolism.

2. There is evidence that embolism may occur in the absence of any other signs of cardio-vascular disease.

3. There is evidence that emboli, when arrested, do not lead to early thrombosis, and may subsequently become detached and pass further along the vessel, with or without causing permanent damage to the retina. Also, that they may cause only partial obstruction.
OBSUCTION OF THE CENTRAL ARTERY OF THE RETINA

Results

Arteries.—While the ultimate reduction in size of affected arteries may, in some cases, be due to a process of accommodation resulting from diminished circulation, there is evidence that in others it is due to the obstruction affecting the nutrition of the walls, followed by degenerative changes.

Retina.—The retinal pallor is a combination of two processes:

(1) Oedema, lasting one to two weeks.
(2) Necrosis of the inner layers of the retina, commencing after and lasting longer than (1).

In cases of temporary obstruction of short duration, the former only may occur.

The Visual Field.—While Coats's observation that the retained field in complete obstruction is situated around the nerve head is confirmed, there is evidence that some field may occasionally be retained at the periphery. The character of any retained field depends on a combination of the duration, the degree and the position of the obstruction, and on the effectiveness of any cilio-retinal circulation or anastomoses. A central scotoma is evidence of a central obstruction of duration between, approximately, one and five and a half hours and is due to macular anaemia.

Vision.—The macula, owing chiefly to precarious vascular supply, is the most vulnerable region in retinal artery obstruction, but, if the duration of the obstruction is short or if there is some healthy circulation in the immediate neighbourhood, restoration of some central vision may occur.

CASE No. 1.
CASE No. 2.

CASE No. 3.
OBSTRUCTION OF THE CENTRAL ARTERY OF THE RETINA

Case No. 5.

Case No. 6.
Case No. 7.

Case No. 8.
APPENDIX

Case Notes

CASE NO. 1.

G. B. Female. Aged 24 years. Married.

History.—Mid-day, 5 days ago, April 2, was washing her hands when, on looking down, noticed vision of R.E. misty. Is sure vision went suddenly. On day of onset whole field of vision of R.E. misty. Next day, she could see the upper half of objects only. Remained the same since. No previous obscurations or eye trouble. Always cold feet even in summer. Chilblains. Occasionally gets fainting attacks.

April 7, 1928. Gross opacity of upper half of central retina shading off towards periphery but sharply demarcated below and not surrounding macula. Opaque retina slightly raised below, as determined by curve of small vessels. While the branches of the sup. temp. A. can be seen fairly clearly, a small vessel coming out from the disc is obscured. Although the central area supplied by the sup. temp. A. is most affected, there is marked oedema on the sup. nasal aspect of the disc, and to a less extent about the inferior vessels. A small portion (about \(\frac{1}{2} \) disc diam.) of the sup. temp. A. on the disc is quite white; a clear cut section of the vessel. On pressure, all the main arteries except the sup. temp. pulsate vigorously. The sup. temp. A. does not pulsate at all. All arteries are of about normal calibre and no beading seen. Inferior div. of main vein larger than superior. Vision = 6/60, emmetropic. Sees only upper part of letter. Left Eye: White. Cornea clear. No k.p. P. active. Media clear. Fundus normal. L. Vision = 6/6.

April 8, 1928. Segment of vessel still white and vessel does not pulsate on pressure. Other arteries pulsate on pressure.

April 10, 1928. White segment of artery now shows a thin streak of blood along its outer aspect as though the lumen were only partly blocked. Wall of vessel can be made out and there is no constriction or collapse. No pulsation on pressure in the affected artery.
10-4-28
Early canalisation

12-4-28
Pulsation on pressure returns.

13-4-28
Red shot left
April 12, 1928. More blood is flowing through affected segment but lumen not filled. There is an irregularity in the restricted stream and at one point it almost widens sufficiently to fill the normal lumen. Sup. temp. A. now pulsates on pressure. R.V. with + 1 D.S. (dilated) = 6/18.

April 13, 1928. Artery now almost normal. Colour has returned completely, but at the site of the previous irregularity there is a spot of deeper red. Less oedema. R.V. = 6/18.

A. C. Female. Aged 38 years.

History.—Between 4 p.m. and 4.30 p.m. to-day, July 22, 1928, while riding in a bus, L.E. suddenly became blind. Never anything the matter before. No obscurations. General health good. Rheumatic fever when aged 13. No knowledge of heart trouble. Periods normal.

Obstruction of the Central Artery of the retina

July 22, 1928, 9.30 p.m. Arteries on disc now red. Inferior temp. A. has a sharply demarcated white segment where it is crossed by inf. temp. vein. L.V. = Counts fingers.

July 22-23, 1928, 12 midnight. R.E. Normal. R.V. 6/6. L.E. Central fundus very pale, with cherry spot not very clearly defined at margins but standing out well. Striated oedema along main vessels. Veins normal. Arteries, normal size and main branches pulsate on pressure. Where the inf. temp. A. is crossed by the inf. temp. vein the artery is definitely paler than elsewhere. The appearance is due to increased oedema, as it is quite different from that at 9.30 p.m. Across the artery here there is a narrow, darker red band. Far out at the periphery of the largest branch of the inf. temp. A., at a bifurcation, there is an obstruction beyond which the blood is beaded and motionless. Near the disc, alongside the sup. and inf. temp. vessels, there are some round woolly patches of pale exudate. L.V. = counts fingers in temporal field.

July 23, 1928. No obstruction or beading of blood seen anywhere.

July 24, 1928. No change.

July 3, 1928. Oedema mostly along inf. temp. vessels. L.V. = counts fingers in temporal field.

September 28, 1928. L. Disc slightly paler than R. Sup. nasal and inf. temporal arteries a little irregular in size but no marked constrictions. Arteries all somewhat smaller than normal. Pulsate on pressure. Fundus normal colour. Macula normal. Tension N. L.V. = counts fingers. Positive central scotoma, with peripheral field complete but slightly contracted.
Case No. 3.

I. B. Female. Aged 21 years.

History.—Always good vision until 3 days ago when, on waking up, could see well in a very small field with R.E., but all around was black. Vision unchanged since. Was very tired and overworked night before sight went. No previous obscurations.
OBSTRUCTION OF THE CENTRAL ARTERY OF THE RETINA

Sometimes feels faint and sick and has to lie down. Acute rheumatism 5 years ago. Does not mind the cold. No chilblains. Periods normal. Bowels regular.

Condition.—General: Healthy-looking girl. Heart: well marked mitral stenosis and aortic regurgitation. B.P. 110/60. Urine: No albumen or sugar.

Local: May 11, 1928. R.E. White. No k.p. Pupil sluggish, direct, normal consensually. Media clear. Pallor of central retina all around disc and macula, except the area between the disc and macula which is supplied by two small arteries coming from the main trunk before the bifurcation. This area is red. The macula appears to be supplied, but has the slightly granular appearance of the usual cherry spot. Retinal folds radiating from macula. Central artery and main branches pulsate on pressure. No obstruction seen. No beading. Vessels normal size. Periphery normal. R.V. = 6/5 slowly in a very small field. L.E. Healthy. Pupil active but poor consensually. Fundus N. L.V. = 6/5.

May 12, 1928. Much oedema covering vessels. Main arteries pulsate on pressure. No beading. Inf. temp. A. most hazy, but sup. temp. also very clouded for about one disc’s diam. from disc. Field corresponds to unaffected area, but there appears to be some faint perception of movement in periphery of temp. field.

May 14, 1928. Beading noted in very small veins just above and outside macula. This is seen perhaps because there is a little oedema. Less central oedema.

May 17, 1928. Central retina now a better colour and demarcation less noticeable. Disc pale. Inf. temp. A. smaller than before throughout its length. It does not seem to pulsate on pressure, perhaps on account of its size. No beading. Other main branches pulsate on pressure. R.V. = 6/5 slowly.

May 19, 1928. Oedema most marked around inf. temp. A. Inf. temp. A. pulsates on pressure. No beading. First temporal branch of inf. div. of cent. A. is definitely small in first disc’s diam. of its length. Along sup. temp. vessels colour is almost normal.

May 21, 1928. No oedema now except below and near disc. Retina normal colour above. Inf. temp. A. most blurred about a disc’s diam. from disc.

Obstipation
Obstruction of the Central Artery of the Retina

F. V. Female. Aged 16 years.

History.—Five days ago awoke in morning to find vision of L.E. very misty. Now a little clearer. No previous obscurations or eye trouble. Has good health. Has been in hospital with chorea. Periods normal.

July 11, 1928. No change in appearance. No obstruction seen. L.V. with +2 D.S. = 6/6 partly.

-4 D. Cyl. 180° = 6/18 partly.

July 14, 1928. Radiating macular folds. No other change.

July 17, 1928. Fundus clearing. Only a little haze by disc.

OBSTRUCTION OF THE CENTRAL ARTERY OF THE RETINA

CASE No. 5.

T. J. Male. Aged 19 years.

History.—This morning, 7 a.m., February 12, 1928, on getting up found R.E. blind. Never anything the matter before. No obscurations. Attended hospital for 3 years with heart trouble seven years ago. Sometimes feels faint, otherwise well.

Local: February 12, 1928, 10.30 a.m. R.E. White. No k.p. Pupil reacts slightly direct, well consensually. Media clear. Retina very slightly pale centrally, just sufficiently so to show up, by contrast an area of healthy retina not quite extending to the macula, supplied by a branched artery emerging from the disc midway between the centre and the edge. Cirrus cloud-like striae of oedema along main vessels. Radiating folds from macula. Main arteries pale, but not constricted. Some small branches obliterated and appear as fine white lines. Arteries collapse on pressure.

February 12, 1928, 2.30 p.m. R.E. Beaded blood still moving in veins. Both arteries and veins a little irregular in size and somewhat smaller than in L.E. Oedema increasing.

February 16, 1928. R.E. Movement of blood seen in some arteries as well as in veins. There is an obvious anastomosis between the lower branch of the cilio-retinal artery and the inferior temporal artery. Just as it passes the macula, movement of granular blood can be seen in the former moving peripherally. It can be traced down below the macula where, for a millimetre or so, it disappears. Then, in apparent continuity, an ascending branch of the inferior temporal artery appears and in it the same movement of blood can be seen moving centrally until the main artery is reached. In this and in its more peripheral branches the granular blood is moving peripherally (diagram). Dense central oedema, especially around vessels. Arteries a little smaller than normal and of more venous colour. Veins vary greatly in calibre.

February 23, 1928. R.E. Until about disc margin, main arteries are like fine threads, they then open out to little less than normal size. Less oedema. Many fine haemorrhages by disc. Anastomosis still seen but less blood. Disc perceptibly paler than L.

OBSTRUCTION OF THE CENTRAL ARTERY OF THE RETINA

Case No. 6.

G. A. Female. Aged 21 years.

History.—At work making beds yesterday morning, suddenly saw stars and found she could not see with the L.E. No previous eye trouble. No obscurations. Several attacks of tonsillitis and quinsy. In hospital for 6 weeks last year with pleurisy and pneumonia. Said to have "Kidney trouble." No chilblains or pallor of extremities. No fainting attacks. Headaches every few months and then sees two of everything. Periods normal.

the disc margin and then hazy as though seen through a fog. Superior division has the appearance of uneven constrictions, giving resemblance to a corkscrew, as far as disc margin where it is crossed by vein. Artery narrower before than after crossing vein. Inferior division normal size until disc margin, then a little smaller. Veins small. Some branches of sup. temp. A. and a long branch of sup. temp. vein contain beaded blood. Cherry spot at macula large and very clear cut, simulating a hole. Periphery normal. L.V. = Doubtful perception of light.

February 8, 1928. No beading. No perception of light.

February 10, 1928. Some constriction at beginning of sup. division of A. Inf. div. larger than superior.

February 12, 1928. Superior div. as far as disc margin very small—almost thread-like. Thereafter, size is about normal. In the constricted portion a slow flow of beaded blood without pulsations can be seen. No beading seen elsewhere. Inferior division of artery pulsates on pressure. Superior does not. Fundus very opaque. No retinal folds seen. L.V. = no perception of light.

February 13, 1928. Sup. div. of A. now large again. Same size as inf. div. Sup. nasal A. now constricted and thread-like at its origin. After about \(\frac{1}{2} \) disc diam. it fills out again.

February 19, 1928. Superior division not constricted. Sup. nasal A. thread-like for a disc's diameter. It is no larger than macular branches within a diameter of macula. No movement of blood seen in it. Inferior division very small—smaller
OBSTRUCTION OF THE CENTRAL ARTERY OF THE RETINA

than macular branch of sup. temp. A. Inferior nasal and temporal arteries almost disappear, but the latter widens a little when it divides. The macular branch of the sup. temp. A. disappears for a short distance at its origin. Beads of blood seen in macular branch of inf. temp. A. While there is no progressive movement of the beads they move to and fro with cardiac systole. Beading seen in places in all parts of the fundus. No circulation seen anywhere. Veins nipped where arteries cross. Disc white. Haziness of fundus has disappeared, but dense central pallor remains. All over the macular region, both around and on the cherry spot, are what look like pearly dewdrops. Radiating folds from macula. Two small haemorrhages near inf. temp. A.

CASE NO. 7.

K. C. Female. Aged 16 years.

History.—In the evening two days ago, noticed she could see only the lower half of objects with the left eye. Was swimming during the afternoon. No previous obscurations. Does not suffer from cold extremities; no chilblains. Very good health. Periods normal.

October 1, 1928. No beading seen.

October 2, 1928. Owing to myopia and enlarged view of disc, several very small vessels can be seen on and around disc. From the superior nasal artery, a small branch is seen passing back through retina at the edge of the disc. Just below this, a fine arteriole emerges from the disc margin and runs out across the retina (drawing).

October 5, 1928. Oedema decreasing on disc. Small haemorrhage below disc. All inferior arteries now pulsate on pressure. Vision unchanged.

October 12, 1928. No change.
OBSTRUCTION OF THE CENTRAL ARtery OF THE Retina

CASE No. 8.
S. F. Male. Aged 36.

History.—Four days ago, on return from work, he began to read and found R.V. misty. Is sure it was all right at work. Has remained the same since. Good vision in the army. No history of previous eye trouble or obscurations except occasional momentary mistiness when reading. Severe burns over chest and abdomen 1912. Discharged from army on account of heart trouble. No numbness or chillblains. No subjective cardiac symptoms.

September 21, 1928. No change.
OBSTRUCTION OF THE CENTRAL ARTERY OF THE RETINA

CASE NO. 9.

J. P. Male. Aged 70 years.

History.—Perfect sight R. and L. until this morning. Sight good on getting up. While dressing, slipped on hearthrug, but did not fall. On recovering balance, vision in L.E. completely gone. No previous obscurations. No children. Good health except for “asthma and bronchitis.”

Local: R.E. White. No k.p. Pupil active. Media and fundus normal. R.V. with +1.5 D.S. = 6/6. L.E. White. Cornea clear. No k.p. P. sluggish. T.N. Media clear. Very marked central retinal opacity. Macula is grey and surrounded by a lighter grey ring. Disc good colour. Superior division of main artery and sup. temp. A. smaller than normal but not collapsed. Beaded blood passes along these arteries in a slow, steady stream. As far as the disc margin the blood is sometimes beaded and sometimes has a corkscrew appearance. Inferior division and its branches larger than superior. Beaded blood passes only with each systole. In inf. temp. A. blood column is very uneven above, even below. The irregularity varies (drawing). A small branch comes off the main artery before the bifurcation, but it is affected. On pressure, arteries do not pulsate, nor do they collapse, except with considerable pressure. Stasis in veins. Calibre very uneven. L.V. = perception of hand movements in temporal field.

June 7, 1928. Movement of blood in superior division very difficult to see. Very obvious in inferior division as before. No pulsation of arteries on pressure. A great deal of pressure is required to stop the circulation. Some movement of blood seen in veins. A few very small haemorrhages near first part of inf. temp. A.

Case No. 10.

G. B. Male. Aged 52 years.

History.—Sudden failure of R.V. 10 minutes ago while walking along. No previous obscurations. Good general health.

Condition.—General: January 12, 1928. No sign of cardio-vascular disease.

Local: R.E. All main arteries white to about a disc's diameter from the disc and thereafter contain motionless beaded blood. Arteries on and near disc, although white, are of about normal size. Beaded blood in veins. Macula slightly accentuated. R.V. = perception of light. L.E. healthy.

March 16, 1928. Vessels full. Full peripheral field with central scotoma.

Case No. 11.

A. M. Male. Aged 65 years.

History.—Had good sight until 9 days ago. Then, while sitting down, L.V. became dim but not blind. Better next day. Two days later both slowly became dim and he could not see even the light. No previous eye trouble. Had occipital headaches for 10 weeks. Otherwise satisfactory health.

L.V. = no perception of light.

March, 23, 1928. No change.

REFERENCES.

15. Lewis, Thomas.—"The blood vessels of the human skin and their responses." p. 8, 1927.